Published as a conference paper at ICLR 2024

EXPLORATION OF DEEP LEARNING ARCHITECTURES
FOR TIME SERIES FORECASTING IN RETAIL SALES

Elliot H. Ha

Pratt School of Engineering
Duke University

Durham, NC 27708, USA
elliot.ha@duke.edu

ABSTRACT

This study evaluates Long Short-Term Memory (LSTM) and Transformer deep
learning models for forecasting retail sales time series at Corporacién Favorita,
an Ecuadorian retailer. After an exploratory data analysis and preprocessing,
both models are developed and compared. The results reveal that the LSTM
model surpasses the Transformer in loss performance, demonstrating its efficacy
in sales forecasting. This research provides insights into effective deep learning
approaches for retail time series forecasting, aiding in better inventory manage-
ment and customer satisfaction.

1 INTRODUCTION

Time series forecasting lies at the heart of many modern problems today. It is thus no surprise that
time series forecasts are both relevant and critically important to the everyday grocery store; with
a behind-the-scenes war being waged every day to tip the delicate balance of overstocking versus
understocking products and goods in the local retailer’s favor. Overstocking products, especially
perishable ones, leads to an unsold surplus for the store and potential food waste, which negatively
impacts profits. On the other hand, understocking products similarly leads to lost revenue, and
perhaps more importantly, unsatisfied customers. For Corporacién Favorita, an Ecuadorian-based
retailer, being able to find this perfect balance between the two has prompted the question of whether
or not deep learning architectures may be applied to retail data over a time series.

This paper aims to first provide two implementations of deep learning architectures for the specific
problem of predicting unit sales for the many items sold at different Favorita retail stores, based off
of historical data and trends. The first of which will be explored will be a standard Long Short-
Term Memory (LSTM) model architecture, and the second of which will be a Transformer model
architecture adapted from the ”Attention is All You Need” by Vaswani et al. [Vaswani et al.| (2017)
paper for time series forecasting purposes. Finally, this paper will aim to provide a comparison
between the two architectures, noting their respective strengths, weaknesses, and overall efficacy in
evaluating time series forecasts.

This paper will investigate the effectiveness of Long Short-Term Memory (LSTM) and Transformer
models in forecasting retail sales time series. It aims to highlight the potential of the LSTM model
in outperforming the Transformer in terms of loss performance, underscoring its utility for accurate
sales prediction in retail environments like Corporacién Favorita. The study will demonstrate how
these models can enable retailers to forecast product demand more precisely, leading to optimized
inventory management, enhanced customer satisfaction, and reduced surplus, ultimately contribut-
ing to increased profitability.

2 BACKGROUND

The Transformer model, introduced in ”Attention is All You Need” by Vaswani et al. [Vaswani
et al.| (2017), represents a significant shift in sequence learning, particularly for natural language
processing. Its core is the self-attention mechanism, enabling the model to process input sequences

Published as a conference paper at ICLR 2024

Table 1: Train data (3,000,888 entries)

FEATURE DTYPE MIN MAX MEAN STD DEV MISSING
id int 0 3,000,887 1,500,438 866,000 0
date str 2012-12-31 2017-08-14 2015-04-24 NaN 0
store_nbr int 0 54 27.5 15.6 0
family str NaN NaN NaN NaN 0
sales float 0 124,717 357.78 1,102 0
onpromotion int 0 741 2.6 12.6 0

Table 2: Test data (28,512 entries)

FEATURE DTYPE MIN MAX MEAN STD DEV MISSING
id int 3,000,888 3,029,399 3,015,143 8,230 0
date str 2017-08-15 2017-08-30 2017-08-23 NaN 0
store_nbr int 0 54 27.5 15.6 0
family str NaN NaN NaN NaN 0
onpromotion int 0 646 6.97 20.7 0

in parallel and capture long-range dependencies, a departure from the sequential processing of RNNs
and LSTMs. The architecture comprises an encoder and decoder, each with multiple layers of
multi-head self-attention and feed-forward networks. Positional encodings are employed to retain
sequence order information. For time series forecasting, the Transformer’s ability to handle long-
range dependencies and its efficient parallel processing make it a promising candidate, suggesting
potential advancements in forecasting accuracy and efficiency.

3 METHODOLOGY

As an overview of the methodology that we will use in approaching this time series forecasting
problem, our solution will be broken up into four main steps.

First, we will perform exploratory data analysis on our data, specifically looking out for the structure
of the data while considering how we can adapt it towards being suitable for time series prediction
models such as our LSTM and Transformer. We will also analyze the overall quality and character-
istics of each dataset that we choose to use, in order to conclude by making an informed decision as
to which direction it is best to go to preprocess the data for our time series models.

Second, we will perform the appropriate preprocessing steps that we have decided best suit our
task for time series forecasting. This will necessarily include transforming the data somehow into
sequence data, as is typical in time series models, as well as additional preprocessing steps that are
typical for deep learning tasks such as normalization.

Next, we will start with building the Long Short-Term Memory model for our preprocessed data.
We will train the model on our processed training data and evaluate it across all entries in the testing
data, as we are missing sales data in the testing data set.

Finally, we will repeat the process from building our LSTM for our Transformer model adapted to
time series forecasting. After training, we will use the model to predict the testing data sales values.
This will allow us to compare the efficacy of both models on the same task.

3.1 EXPLORATORY DATA ANALYSIS

To begin our exploratory data analysis, we will focus on three datasets that we have been given.
These will be train.csv, test.csv, and oil.csv. This section aims to explore the structure of the data
and provide some insights via typical exploratory data analysis techniques.

Published as a conference paper at ICLR 2024

Table 3: Oil data (1,218 entries)

FEATURE DTYPE MIN MAX MEAN STD DEV MISSING
date str 2012-12-31 2017-08-30 2015-05-02 NaN 0
dcoilwtico float 26.2 111 67.7 25.6 43

Starting with the training data, whose general characteristics are displayed in Table [1} we first note
that there are no missing values across any feature, but most notably the date, which tells us that we
will be able to make consistent sequences in time without having to preprocess further. We also note
that the wide range and high standard deviation indicate significant variability in sales, possibly due
to differences in store locations, product families, and other factors. As well as this, the presence of
sales as low as 0 might indicate no sales for some items on certain days or data recording practices
that include days/items with no sales. Finally, with the maximum value of the onpromotion feature
of 741, as well as the mean of 2.6 and standard deviation of 12.6, this suggests that promotions are
not equally distributed across products or stores, with some items experiencing heavy promotion
while others have none.

Moving onto the testing data, displayed in Table[2] it is shown again that there are no missing values
across any feature, with the standout again being the date, as the minimum value of the testing date
is the date directly after the training data ends. This suggests that we will be able to iteratively
predict sales values for our testing dates in an autoregressive manner, using the output prediction at
one time step to build our input sequence for the next time step.

Finally, the oil data displayed in Table[3|shows missing values for the dcoilwtico feature, which rep-
resents the closing price of oil, a notable variable due to the importance of the resource to Ecuador’s
economy, and thus, tangentially, the average spending power of an Ecuadorian. By looking into the
data more, it is noted that these missing dates all occur on weekend dates, suggesting the data source
is likely a market that operates on weekdays only. This needs to be considered in any time series
analysis to avoid skewed interpretations.

To summarize the overview on the datasets, we have presented three datasets with little to no missing
values or outliers. In addition, we identify two important categorical variables across the data in
the form of the store_nbr and family, and three continuous features in the sales, onpromotion, and
dcoilwtico features. In order to build inputs suitable for time sequences, we will need to consider
how to combine the categorical information into sequences with the continuous features.

3.1.1 APPROACH TO SEQUENCE BUILDING

Approaching our training data, it is immediately of note that there are many more entries than there
should be dates, if each date was given a distinct entry immediately suitable for time series problems.
The training data records sales numbers for dates for any of the 54 distinct store numbers, and if a
specific store had even a single sale on that specific date, then there are rows outlining each of the
33 families of products, as well as there sales numbers, which tend to be sparse due to unlikelihood
of selling at least one item from every single family on a given date. Due to the variability in our
data’s structure, i.e., there can be as little as 1 store and as such 33 rows of data corresponding to a
date, to as many as 54 stores having sales, with each store getting 33 rows in the dataset outlining
the sales numbers of the products that they sold that date, this presents a significant challenge in
deciding how best to preprocess this data in order to make it suitable as input to time series models,
i.e., make contiguous time step sequences that are consistent in the data that they represent.

There are a couple of different approachs to consider. First, for our time series models, we could
build a single model handling all combinations that could potentially learn global patterns applicable
to all stores and families. This would be done with an embedding vector for categorical information,
with each date necessarily having to encode all 54*33 = 1782 possible store_nbr, family combina-
tions of sales data as an upper bound. However, such a model might struggle with the high variability
and sparsity across combinations. It may fail to capture the unique characteristics of each specific
store-family pair. Second, we could consider using feature engineering to solve this problem by
encoding the categorical features as one-hot vectors and using them as inputs to a different model

Published as a conference paper at ICLR 2024

before our time series model to extract a condensed feature representation. However, this would
significantly increase the feature space as we would be adding 87 features to our space, and could
lead to a very sparse and high-dimensional problem, making the model prone to overfitting and
increasing computational complexity. Finally, we can choose to build a separate model for each
store_nbr, family combination. This allows for tailored learning specific to each combination’s sales
pattern, as well as handling sparsity as a dedicated model might be better suited to learn from the
limited data available. This would solve our data structure approach as we would be able to filter the
dataset for specifically the categorical combination at hand, which will naturally lend itself towards
singular time step increments, as it will be impossible for a given store_nbr, family combination
to occur twice in one day. Although the computational complexity of this approach is excessive
with building a separate model for each combination, it equals the computation needed to compute
a similarly sized embedding for each date in order to get our time steps in a sequential order, with
this approach’s advantages stemming from how it intrinsicly deals with sparsity in data and its gran-
ularity in learning each combination’s patterns. Finally, by building a model for each categorical
combination pairing, this inherently utilizes the categorical information in the model, allowing us to
simply use the remaining features, all continuous, as the input features for our input sequences.

To summarize, the decision to build a separate model for each store_nbr, family pairing is driven by
the need to address the unique sales patterns and data sparsity issues inherent in each combination.
While alternative approaches like a single unified model or embedding layers could provide a more
elegant and scalable solution, they come with their own set of challenges, particularly in effectively
capturing the variability across different store-family combinations. The chosen approach aims to
balance model complexity, data sparsity, and the need for customized predictions for each unique
combination.

3.2 DATA PREPROCESSING

To proceed with data preprocessing, it is important to bear in mind the final shape of input that will
be passed to the models. As this is a time series problem, we will be using sequences of our data
of shape (sequence_length, num_features). As these will be batched, our final input will end up
being tensors of shape (batch_size, sequence_length, num_features).

3.2.1 CREATING SUBSET DATA

First, I handled the oil dataset, merging it with both the training and testing dataset with a left-
merge on the date variable. To handle the missing weekend dates, I interpolated the merged datasets
with a limit direction in both directions, as this would allow for dates to be filled that do not have
immediately following data values, such as dates before the weekend starts. Then, I obtained a list
of the unique entries for both the store_nbr and families, of which are shared across the training
and testing datasets. With a double-nested loop, it becomes possible to select a subset of the larger
training data with values only for this specific store_nbr and family, which results in us having
sequential time data with step sizes of 1.

3.2.2 PREPROCESSING SUBSET DATA

As a reminder, the keys of each subset of data from the merged training dataset were (id, date,
store_nbr, family, sales, onpromotion, dcoilwtico). As we are handling the categorical variables
store_nbr and family via our approach to data, we drop this, the id, and set the date as the index of
the dataframe. We are left with three continuous variables of sales, onpromotion, and dcoilwtico for
the training data for this subset for the store_nbr, family combination. As we are not guaranteed to
have sales for this categorical combination for each date, we fill in missing dates with zero values.
Finally, we apply a Min-Max Normalization scaling to the data.

3.2.3 CREATING SEQUENCES

Our preprocessed subset of data now has shape (numcntries, numeatures), where each entry
is a date, and our features are the normalized continuous features. We want to create sequences
where each token is a time step, and each token has the full feature dimensionality. In order to do
so, we iterate through the dataset up until the seq;engthth index from the last point. This allows
us to take a slice of the dataframe from our current index to our current index plus the sequence

Published as a conference paper at ICLR 2024

Table 4: LSTM hyperparameters

HYPERPARAMETER VALUE DESCRIPTION

hidden_dim 128 The hidden dimension of the model

num-layers 3 The number of LSTM layers

num_features 3 The number of continuous features

output_dim 1 The output sales value from the feature dimension
batch_size 32 The batch size for the Datal.oader

length, which gives us our sequence of shape (segqength, numreatures). Additionally, we take
take the index + seqength value from the ’sales’ column. This will be our target label, or the
‘next-date’ sales value we want to predict. We iterate through the dataset in this manner, appending
each sequence and label to their respective arrays, and finally returning them as NumPy float arrays.
From these, we create a TensorDataset, and then Datal.oader with a parameter of shuf fle = True.
This DataLoader will give us inputs, (batchsize, seqiength, numseatures).

3.3 LONG SHORT-TERM MEMORY (LSTM) MODEL

We start discussion of the Long Short-Term Memory Model in the context of its usual use-case:
natural language processing tasks. Here, the objective is to predict the next word, a categorical
feature, by having the model outputting a softmax probability distribution over the vocabular and
adjusting it with the cross-entropy loss, which will give us the next word if we take the argmax of
the output probability vector. In our specific time series use case, this changes to wanting to predict
the next date’s sales value, a continuous feature, so we can skip several steps in the usual LSTM’s
workflow such as the embedding layers and creating a probability distribution over data.

Instead, both our LSTM and Transformer will utilize the Root Mean Squared Log Error, mathemat-
ically,

n

% Z (log(1 + ;) — log(1 + yl))Q
i=1

Where n is the total number of instances, ¢; is the predicted value for instance ¢, y; is the actual
value for instance ¢, and [og represents the natural logarithm. This is a form of loss that incurs a
larger penalty for underestimation of results than overestimation. This is important in the store sales
prediction case as it is much more profitable and useful for a store to have a surplus of a product
than a deficit.

3.3.1 MODEL ARCHITECTURE

Before we discuss our LSTM'’s architecture, we will define the hyperparameters as follows in Ta-
ble

With the context out of the way, we start with an input from the Datal.oader of shape
(batch_size, seq-len,num_features). We can input this directly to the LSTM layer with internal
weights initialized to zeros with the current batch size. For further LSTM layers, of which we will
have 3, the internal weights will be set to the weights from the previous layer. As our LSTM layer
outputs an output of shape (batch_size, seq_len, hidden_dim) in addition to the tuple of hidden and
cell states, it is from this that we want to obtain our final sales prediction. We can do so by slicing this
output along the sequence dimension to get the last time step of shape (batch_size, hidden_dim),
which represents the LSTM’s output representation of the next date’s sales values. Finally, we send
this through a Fully Connected Layer mapping from hidden_dim to an output_dim = 1 and return
this as our normalized sales prediction along with the last internal weights from the last LSTM layer.

Published as a conference paper at ICLR 2024

Table 5: Transformer hyperparameters

HYPERPARAMETER VALUE DESCRIPTION

model _dim 512 The hidden dimension of the model. Originally d,
num_layers 6 The number of encoder and decoder blocks
num_heads 8 The number of heads for multi-head attention
num_features 3 The number of continuous features
forward_expansion 4 The scaling factor in the feed forward network

N _enc 15 The input sequence length for the Encoder

N _dec 1 The input sequence length for the Decoder
output_dim 1 The output sales value from the feature dimension
batch_size 32 The batch size for the DatalLoader

3.4 TRANSFORMER MODEL

We will now begin discussion of the Transformer architecture used in this time series forecasting
problem. It will be divided into two parts: an overview of the Encoder, and how it ties into the
Decoder to produce output. Beforehand, we will define the hyperparameters as follows in Table 5}

3.4.1 TRANSFORMER ENCODER

The transformer starts with an input sequence from the DatalLoader of shape
(batch_size, N_enc,num_features). We send this to a Linear Layer in order to project the
input into the model space, (batch_size, N_enc, model_dim). We also create a positional embed-
ding of similar size and add to this projected input. This represents the input to the first Encoder
block.

Each Encoder block is defined by two parts. First, a Multi-Head Attention block with a subsequent
Add & Norm block. Then, a Feed Forward block with a subsequent Add & Norm block. Connected
to each of these Add & Norm blocks are skip connections from the previous input.

Each Multi-Head Attention block takes the input of shape (batch_size, N _enc, model_dim). To
split into the different number of heads, we send this input through a Linear Layer to get shape
(batch_size, N _enc, model_dim/num_heads). For the Encoder solely, we do this three separate
times in order to get our Key, Value, and Query matrices each of these shape. We then reshape each
of these into (batch_size, num_heads, N _enc, model_dim/num_heads) with the num_heads in
the second dimension to better parallelize processing.

From here, we calculate attention via the formula Attention(Q, K, V) =

softmax(Q—\/Ic%T)V Vaswani et al| (2017). Explicitly, QK” gives us a shape

of (batch_size,num_heads, N _enc, N _enc). Applying a softmax and normal-
izing across the third dimension by +/d,, which, in this case, is model_dim,
will keep this shape. Applying the last matrix multiplication with the val-
ues matrix of shape (batch_size, num_heads, N _enc, model _dim/num_heads)
gives us (batch_size,num_heads, N _enc,model_dim), ~ which ~we reshape into
(batch_size, N _enc, num_heads-model_dim/num_heads) = (batch_size, N __enc, model_dim).
Finally, we send this to a Linear layer of the same output dimension, and this will be the output
from our first Multi-Head Attention block.

From previously, we add our original input from the positional embedding of the same shape, and
then apply Layer Normalization to this output. Now, we send this to a Feed Forward network with
two Linear layers and a ReLU non-linearity function in between. The first Linear layer projects
the input from (batch_size, N _enc, model_dim) to (batch_size, N _enc, forward_expansion -
model_dim), and then ReLU is applied, and then the second Linear layer brings the input back
to model_dim. We send this to another Add & Norm block where we add the input to the Feed
Forward network to our current input, and then apply Layer Normalization again. This output will
be that of our very first Encoder block. We use this as the input to our next Encoder block and we
repeat this for num_layers = 6 total Encoder blocks. Thus, our Encoder is finished.

Published as a conference paper at ICLR 2024

Table 6: LSTM Loss Performance

COUNT MEAN STDDEV MIN 25% 50% 75% MAX

1782 0.128488 0.092307 0.000000 0.068375 0.103600 0.159650 0.456200

Table 7: Transformer Loss Performance

COUNT MEAN STDDEV MIN 25% 50% 75% MAX

1782 0.167399 0.103450 0.000000 0.090125 0.148350 0.232575 0.596400

3.4.2 TRANSFORMER DECODER

The architecture of our Transformer’s Decoder is largely similar to that of our Encoder, with three
important distinctions. The first is that the input to the Decoder is no longer a sequence of shape
(batch_size, N _enc, num_features), representing the sequence across all features for N_enc =
15 time steps, but rather it is of shape (batch_size, N _dec, output_dim), where N _dec = 1, as
we are trying to predict the single next-date sales output value. Similarly, the final output of our
decoder block will be of equal shape to this as we want to use our predicted outputs as part of
our next sequence inputs. Second, the first multi-head attention block in the Decoder is distinct
from those in the Encoder as it uses a lower triangular mask in order to make future tokens rel-
ative to our current token values close to negative infinity, thus forbidding our model from learn-
ing from these future values. This is because the actual predicting of values happens in the De-
coder, and as such, we cannot learn from these future values. The idea behind the implementa-
tion is that if we are trying to mask our attention scores, which for our decoder, will be of shape
(batch_size, num_heads, N _dec, N _dec), then we want to make a square matrix tensor of ones of
shape (N _dec, N _dec), take the lower triangle of this, and expand it into the decoder shape in order
to apply it as a mask over the attention scores. Finally, the last difference between the Decoder and
Encoder is that there is a second block of multi-head attention, but it is distinct in that it uses the
output from the last Encoder block as its inputs for the Key and Value matrices. The Query matrix
comes from the previous masked multi-head attention block.

Altogether, we start with an input of shape (batch_size, N _dec, output_dim), and similarly to the
Encoder input, project it to the model dimension and add a positional encoding. Our input to the
first Decoder block is thus (batch_size, N _dec, model_dim). Our output from each Decoder block
will be of similar shape, and the output from the very last Decoder block will be sent to a Linear
layer in order to project it into our output dimension for our sales prediction.

4 RESULTS

Both models were trained on the same data sets with a batch size of 32, number of epochs of 10,
learning rate of 0.001, the ’Adam’ optimizer, a "MultiStepLR’ scheduler, and trained on ’CUDA’.

4.1 LONG SHORT-TERM MEMORY MODEL

When submitted to the Kaggle competition, a score of 3.02217 was obtained for the final testing
data submission CSV file.

4.2 TRANSFORMER MODEL

When submitted to the Kaggle competition, a score of 3.9873 was obtained for the final testing data
submission CSV file.

Published as a conference paper at ICLR 2024

Average Loss by Category for Each Model

030 m TFansformer Loss

LSTM Loss

o
o
=

Average Loss
o
&

010

DAIRY
DELI
EGGS
MEATS

LINGERIE | e——
LIQUOR: - —

ITOMOTIVE
BABY CARE s
BEAUTY
EVERAGES
BOOKS fm——
BREAD
CLEANING
‘GROCERY
ROCERY |
KITCHEN Il J
D GARDEN
POULTRY
PRODUCE

LEBRATION ee—
PPLIANCES
DIESWEAR | —
JAGAZINES | e—
SCTRONICS P

TEN FOODS —
) KITCHEN | | e—

1ARDWARI
IOME CARE
INAL CARE
T SUPPLIES
\ED FOODS
E SUPPLIES |
SEAFOOD

Figure 1: Average loss by category for the transformer vs LSTM model

Average Loss by Store for Each Model

= Fansformer Loss
LSTM Loss

015

Average Loss.
= s o
= 2 2
2 & H

T —

""‘”‘"""“”""’““‘S:umzﬁﬁ:ﬁﬂﬁ:émzﬂﬁiﬁﬂﬁm
Store Number

Figure 2: Average loss by store for the transformer vs LSTM model

5 CONCLUSION

Based on the presented results, it is evident that in the context of the evaluated dataset or task,
the LSTM model outperforms the Transformer model in terms of loss performance. The statistical
analysis reveals that the LSTM not only maintains a lower average loss but also exhibits a tighter
distribution of loss values, as indicated by its lower standard deviation. Additionally, the LSTM
shows more favorable results in both the median and the maximum loss recorded, suggesting its
consistency in maintaining lower loss values across various segments of the dataset. This is further
compounded visually in Figures[T|and 2} with the Transformer having higher values across all stores
and categories. While these findings highlight the LSTM’s efficiency in this specific scenario, it’s
crucial to note that this conclusion is based solely on loss metrics. For a thorough assessment, other
performance indicators and the model’s applicability to the task at hand should also be taken into
account. Nonetheless, in the realm of loss minimization, the LSTM model demonstrates a clear
advantage over the Transformer model for this particular application.

Published as a conference paper at ICLR 2024

REFERENCES

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

	Introduction
	Background
	Methodology
	Exploratory Data Analysis
	Approach to Sequence Building

	Data Preprocessing
	Creating Subset Data
	Preprocessing Subset Data
	Creating Sequences

	Long Short-Term Memory (LSTM) Model
	Model Architecture

	Transformer Model
	Transformer Encoder
	Transformer Decoder

	Results
	Long Short-Term Memory Model
	Transformer Model

	Conclusion

